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Summary. The electron propagator theory is presented with somewhat of a his- 
torical perspective and the working equations are developed with the aim of taking 
advantage of molecular point group symmetry. A new electron propagator code, 
the vectorized electron propagator program (VEP), is introduced without full 
details about its structure and capabilities (such details are being published else- 
where). Applications to the (UV) photoelectron spectra of some donor-acceptor 
complexes of borane with carbon monoxide and water are presented at the level of 
second-order theory as an illustration of the theory and the VEP code. 
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1. Introduction 

Propagators gained early prominence in formal many-body theory of fermion 
systems (see e.g. [1] and references therein). Concerns about the elimination of 
unlinked terms in perturbation expansions and the associated correct scaling with 
system size naturally led to the propagator concept. Treatment of double-time 
Green's functions [2] or, equivalently, propagators established that they provide 
a useful link between quantum mechanical treatments of pure state systems at the 
absolute zero and that of ensembles at finite temperature. Condensed matter 
theory employed the propagator concept to great advantage (see e.g. the review by 
Hedin and Lundqvist [3]) and propagator theory for finite systems [4-6] led to 
new ideas for the treatment of molecular systems. A detailed treatment by Linder- 
berg and Ohm [7] of a variety of spectroscopies for molecular systems further 
developed and applied propagators. Analyses in terms of perturbation theory of 
the electron binding energies defined by the poles of the electron propagator were 
done by Pickup and Goscinski [8]. The development of the electron propagator 
theory was given a pedagogical treatment in the book by Jorgensen and Simons 
[9]. Schirmer et al. [10] introduced the so-called algebraic diagrammatic construc- 
tion (ADC) of the perturbation expansions for the electron propagator. Many have 
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contributed to the theoretical and computational advances of the electron propa- 
gator and there is much current work going on, particularly in the study of 
polymeric systems by Deleuze et al. [11], and it is impossible to give proper credit 
to all here. This paper focuses on the electron propagator theory and its application 
to molecular systems and gives some of the key references often forgotten in recent 
work. 

The electron propagator is naturally described in Fock space in terms of field 
operators. Depending on only two electron position and spin coordinates and 
a time or energy parameter it is in many ways the optimal theoretical quantity with 
a dynamical equation from which it can be determined in various approximations. 
It contains a wealth of information. Not only vertical electron binding energies 
(ionization potentials and electron affinities) [12-14], but also electron scattering 
amplitudes [15], photoionization intensities [13, 16], total energies [17, 18], one- 
electron reduced density matrices [7, 19] and therefore permitting the calculation 
of one-electron properties [20]. Derivatives of molecular electron binding energies 
with respect to nuclear displacements [21, 22] have also been determined within 
the electron propagator theory. Basically all properties of a molecule are contained 
in the propagator. Thus electronic and rovibrational spectra [143 and the partic- 
ulars of chemical bonding can be treated in terms of the electron propagator 
[23, 243. 

Given a set of orthonormal spin orbitals {q~p(~)} and the associated set of 
electron field operators {ap, ag} satisfying the anticommutation relations (at equal 
times) 

[ap,aq]+= t t [ap, aq]+ = [ap, a~]+ - 6.q -- 0 (1) 

the electron propagator matrix is defined with elements 

( ( a ,  (t); a~(t') ) ) = - iO(t - t') @lap (t)a~(t') l O) 

Here 

+ iO(t' - t)(0l atq(t')ap(t)l 0).  (2) 

f 
t 

O(t) = &(z) dz (3) 
- o o  

is the Heaviside step function expressed in terms of the Dirac delta function, and 
10) is the N-electron ground state. Atomic units are used throughout so for 
instance • -- 1 and the Heisenberg equation of motion for the field operators is 

d 
i ~  ap(t) = [ap(t), H ] _ ,  (4) 

where the commutator on the right contains the many-electron Hamiltonian 
expressed in the basis electron field operators 

1 
H = ~ hpqa~aq + - 2 (Pq II rs) @atqasa,. (5) 

p ,q  4 p , q , r , s  

The one-electron integrals involving the electron kinetic energy and the elec- 
tron-nuclear attraction terms are 

~=1 I ~ - ~ 1  4,q(~)d~ (6) 
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and the antisymmetric two-electron integrals are (pqllrs) = ( p q l r s ) -  (pqlsr) 
with 

f f  1 (pqlrs)  = d~l d~2~*(~l)q~q*(~2)[r'l - ~2------~ ~r(~l)q~s(~2). (7) 

The electron propagator is most commonly studied via its Fourier transform 

;? ( ( a , ;  a~))E = ((av(t); a~(t'))) exp[ - iE(t - t')] d(t t'), (8) 
a o  

which has the spectral representation [25, 7] 

I (Olaplm) (miami0) 
((av;  a~))E = ,~+olim ~,~ E + Eo(N) - E.,(N + 1) + it/ 

(0[a~[rn) (m[ap[0) -] 

+ E - Eo(N) + E,.(N - 1) - ir/J ' 
(9) 

showing the typical pole structure, when the energies are discrete as they always are 
in a finite basis set. The energy eigenstates are used in this formal expression, i.e. 

HI0)  = Eo(N)I0),  

Him) = Em(N +_ 1)Ira) (10) 

and only the N + 1 and N - 1 electron states are involved as intermediates in the 
spectral representation. 

It is obvious from the spectral representation that the electron propagator has 
a special significance for photoelectron spectroscopy and other processes where 
electron binding energies are measured. The numerator contains the so-called 
Feynman-Dyson amplitudes 

fv(m) = (0l a vl m),  

gv(m) = (mla , [0 ) ,  (11) 

which are obtained as residues at the particular poles of interest. These amplitudes 
are important in the theoretical determination of transition probabilities for 
electron attachment or detachment processes. For instance, the intensity of a par- 
ticular structure corresponding to the final positive ion state m in a photoelectron 
spectrum of a neutral species is proportional to the pole strength [12, 13] 
F,, = Evl gv(rn)l 2. 

The propagator in Eq. (9) satisfies the equation of motion 

E((av;  aqt))e = (0l[ap, a t ]+ 10) + ( ( l ay ,  H]_ ;  a~))~ 

= (Ol[a v, at]+ 10) + ((ap; [H, at-]_))  E (12) 

which can be readily shown by using the identity 

E(E- -  x) -1 = 1 + x ( E -  x) -~ (13) 

with x -- Em(N + 1) - Eo(N) or x = Eo(N) -- Em(N - 1) in the spectral repres- 
entation and utilizing the properties (10) of the energy eigenstates. The two 
equivalent forms of the equation of motion (12) are useful in manipulating the 
chain of equations that obviously results when the corresponding equation of 
motion is written for the propagator on the right, which involves the commutator 
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with the Hamiltonian, yielding an even more involved propagator on the right 
with, say, a double commutator [[%, H]_, H]_, and so on. Approximate treat- 
ments of the propagator equations include the termination of this chain of equa- 
tions at some suitable level or assumptions that permit the summation of the 
expansions. This so-called decoupling problem was addressed in its generality by 
Linderberg and Ohm [6] by linearizing the equation of motion. There has also 
appeared discussions of truncation schemes expressed in terms of diagrammatic 
expansions by Cederbaum and Domcke [14], the moment conserving decoupling 
usin~ Pad6 approximants as well as various renormalization schemes discussed 
by Ohrn and Born [26], and decoupling procedures expressed in terms of super- 
operators [27]. 

Although equivalent to other procedures the superoperator formulation 
provides a particularly attractive shorthand notation. It proceeds by introducing 
a linear space L of fermion-like field operators 

L {@,@a~ar(p<q), .t , , = apaqarasat(p < q < r; t < s), ... }, (14) 

which supports a scalar product 

(XI g ) ' =  <Ol[X*,g]+lO), X , Y ~ L .  (15) 

The superoperator identify I" and superoperator Hamiltonian/-) are defined on 
L such that 

7X= X, 

f i X  = [ H , X ] _ .  (16) 

Iterating the second form of Eq. (12) yields 

((ap; aq*>>E- (a; I aq*)~ + (a~]/~aq t ) E  --------2~ + (a;[/42aq * ) E  3 + ... 

= (a~l(El"- H)-I  aq*), 

i.e. a matrix element of the 
expressed as 

(17) 

superoperator resolvent. The full matrix can be 

G(E) = ( a t l ( E i - / ~ ) -  la*) (18) 

with the field operators arranged in a suitable row array on the right and column 
array on the left. 

Using an inner projection [28] manifold h s L the superoperator inverse can be 
transformed to a matrix inverse 

G(E) = (at lh) (hi(El - / ~ ) h ) -  1 (h la*). (19) 

This expression is the starting point for the approximate treatments of the electron 
propagator. 

2 Approximations to the electron propagator 

Partitioning of inner projection manifold 

The simplest decoupling of Eq. (12) is to consider the so-called moment expansion in 
Eq. (17) and make the assumption that higher moments are powers of the first moment 

F = (a*l/ta*). (20) 
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This is often referred to as the geometric approximation. Denoting (a t la t) = S the 
moment expansion (17) becomes 

G(E) ,,~ E - i s [ 1  + E - i S - i F  + E-2S-XFS-1F + ...] 

= S(ES - F ) - I s  = (atl(EI " - / 4 )  at) -1 = Go(E). (21) 

The anticommutation relations (1) yielding 

Spq = (a;[a~) = (0lEap, at ]+  10) = ~pq, (22) 

and 

Fpq = (@l/4a~) = (01 lap, [H, aq t ] _] + 10) 

= hpq + E (prllqs) (0la~asl0) (23) 
r , s  

have been employed, where in the last expression Fvq is a matrix element of the 
Fock operator in the spin orbital basis. The single-particle reduced density matrix 
has the elements 

?,st = (0la~ asl0) (24) 

and can be diagonalized simultaneously with F to give occupation numbers (n,),  
i.e. 7~r = (n , )  6~, and xtFx = e for some suitable unitary transformationx. Compar- 
ing Eq. (21) with the formal spectral representation (9) it is possible to write 

Go,q(E) = lim ~ Xp, [ (n.) 1 - ( n ~ )  Ix*, (25) 
.~ + o E -- e~ 2_ itl + E - e. + it/_ ] " 

For the case that the occupation numbers are 0 or 1 the reference state 10) must be 
a single determinant in terms of the self-consistent field (SCF) spin orbitals 

7~, = ~ q~p x,,  (26) 
P 

or equivalently expressed in terms of the field operators and the vacuum state as 

N 

10) = [ I  a~lvac) =- I~ itlvac) • (27) 
i = 1  i 

In the following the electron field operators (at -= r} refer to the SCF spin orbitals 
{Zr}. It then follows through Eq. (25) that at this level of approximation, the 
occupied spin orbital energies must be identified with ionization potentials and the 
unoccupied ones with electron affinities as is done through Koopmans' theorem. 

This is considered the lowest level of approximation and used as a starting 
point for all higher-level treatments of the electron propagator. The SCF spin 
orbitals and then also the corresponding electron field operators naturally separ- 
ate into an occupied set labeled by i,j, k . . . .  , and an unoccupied set labeled by 
a, b, c . . . .  The labels p, q, r, ... refer to either set. 

The inner projection manifold h used in the expression (19) need only contain 
fermion-like operators [29], i.e. 

{h} = {hl}u{ha}w{hs}w ... 

= {a*, i*}w{a*bti, itj*a}~{atbtctij, i*j*k*ab}u ... (28) 
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and truncations of this manifold corresponds to various approximation schemes. It 
is convenient to use an orthonormal set of inner projection basis elements [29] so 
that (hilhl) = 1, and (hdhi) = 0 for i # j .  

A first step in seeking adequate approximation schemes for the electron propa- 
gator is a partitioning of the inner projection manifold. When the aim is to obtain 
a theoretical photoelectron spectrum it is convenient to choose the partitioning 

h = { h b f } ,  

f = {h3}~{h5}w "'" (29) 

such that Eq. (19) becomes 

. . F E I - ( a * I - O a  t) - ( a ' l - o f ) ] - t I ~  ] 
G(E)= [1 tll L - ( f l - o a * )  E l - ( f l / ~ f ) _ ]  t_v," (3o) 

The partitioned form of the inverse matrix yields 

G- l(E) = E1 -- (a t I-oa*) - (a* I-of) [El - ( f  I-0f)] - l ( f  I-oa*) 
= GoI(E)  - S(E) ,  (31) 

where the unperturbed propagator and the self-energy term have been defined to 
show the relation to the so-called Dyson-like equation for the propagator [1]. An 
untruncated manifold f means no approximation, only a reformulation of the 
propagator equations. In order to arrive at a definite approximation and provide 
algorithms for the calculation of the matrix elements defining the propagator, 
a reference state and a truncation of the inner projection field operator manifold 
must be chosen. 

Choice of  reference state 

The Hartree-Fock or SCF single determinantal state 10> = [HF> provides the 
natural starting point for the choice of reference state at various levels of approxi- 
mation. Although the electron propagator theory can be fully developed within 
a perturbation theory framework with only the SCF single determinantal reference 
state and choice of inner projection manifold [26] it is desirable to keep a balance 
between the level of description of the reference state 10> and that of the inner 
projection manifoldf Such a balance kept through various orders of perturbation 
theory guarantees hermiticity of the superoperator Hamiltonian matrix and the 
elimination of spurious terms [29]. Starting from a partitioning of the Hamiltonian 
and thus also of the superoperator Hamiltonian 

H = Ho + 6H, 

Ho = ~ epp*p, 
P 

6H = ~ (pq I1 rs> [¼p*qtsr - 6q~(n~>ptr], (32) 
p,q ,r , s  

the reference state can be expressed in terms of Rayleigh-SchriSdinger perturbation 
theory (RSPT) [30, 9] or coupled-cluster (CC) theory. Also multiconfigurational 
SCF (MCSCF) theory has been implemented [31] for the electron propagator 
reference state. This treatise employs reference states based on RSPT and CC theory. 
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(X I / tr )  = (r  j/~X)* 

not being satisfied 
a density operator 

403 

(33) 

for an approximate reference state or more generally for 

P = P o  + (~P +g)2P + ... + c~np (34) 

correct through order n in perturbation theory. The average defining the propa- 
gator matrices is then a trace, i.e. 

< ..-> -- T r{p . . . } .  (35) 

Since 

< [ X * , [ H , Y ] _ ] + >  - < [ Y * , [ H , X ] _ ] + > *  = <[H, [X* ,  Y ] + ] = >  

= Tr{p [H, [X*, Y ] + ] _ }  

= Tr{[p, H]_[X*, Y]+]_}  (36) 

and since 

and 

[Po, Ho] -  = 0 (37) 

[6kp, H o ] -  + [6k-lp, 6H]_ = 0 (38) 

are assumed to hold for k = 1, 2 , . . . ,  n, the error term is of order n + 1, i.e. 

(XIfflY) - (YlfflX)* = Tr{[f"p, 6H] - [X*, Y ] +}. (39) 

The Rayleigh-SchriSdinger perturbation expansion for the reference state, 

{0>RSP T ~-~ (1 + Kt  + K2 + Ka + "'" )[HF), (40) 

is defined by 

and 

with, in particular, 

and 

K, = Z Z k~a*i, (41) 
i a 

K2 = Z ~ k"ba*ib*ii~ ,,  (42) 
i>ja>b 

K3= Z Z k~a'ib*jc*k, (43) 
i>j>k a>b>c 

ki~b = < ij ]l ab > D~f (44) 

, = ½ [ ~  <bcllaj> k t~ - ~. <iblljk> k~l" 
ki ----7--- a ybc Di jkb Di 

(45) 
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The denominators are defined as 

and 
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D~ = el - ea (46) 

D... b ~j : /3 i - t -  ~ j - - / 3  a - ~ b .  (47) 

The concept of order in the perturbation expansion of the electron propagator 
ultimately means order in terms of the electron-electron interaction or equivalently 
two-electron integrals. The inclusion of electron correlation through first order in 
the reference state is achieved with the double excitation terms K2 whereas also the 
K1 terms are needed for second-order corrections. 

Coupled-cluster renormalization of the reference state 

The coupled-cluster (CC) expression [32] for the reference state 

10)cc = eTIHF) 

is defined by 

T = T 1  + T 2 + T 3 +  .'. +TN,  

with N being the number of electrons of the system and 

(48) 

(49) 

T1 = ~ ~ t.Fati, (50) 
i a 

T2 = 2 ~ t~ba'ibtj, (51) 
i > j a > b  

T3 = 2 ~" t~Ca'ibtjc*k, (52) 
i > j > k  a > b > c  

and so on. 
The T amplitudes contain infinite-order contributions to each excitation level 

from the HF state. Thus, replacing the RSPT K amplitudes with the CC T ampli- 
tudes may be considered a renormalization procedure since certain classes of 
perturbation terms or diagrams are summed to infinite order [33, 34]. This idea 
has already been employed in work on the polarization propagator [35, 36]. 

Details of the coupled-cluster approach 

Expansion of the exponential in the CC method gives 

[O)cc = [1 + Tx + (T2 + ½T 2) + . . . ] ]HF)  

= [ 1  + ~ t T a t i +  ~ ~ t~batb*ij 
t_ i a i > j  a > b  

II ) 1 + 2 ~t ;a t i  2~t~b*J + ... [HF),  
/ , , j  

(53) 
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where the last term can be rewritten as 

= 2 2 [(trt~a*ibtj) + ( t )]b t ia t j ) ] ,  (54) 
i > j  a > b  

and since for the orthonormal basis of SCF spin orbitals, 

b*ia*j = -- a*ibtj, (55) 

the CC reference state becomes 

IO)cc = [1 + Zl + (Z2 -t- ½Z f) + . . . ] IHF)  

=[ l+~t~at i+  ~" ~'c~batibtj+ ...IIHF), (56) 
• i > j  a>b  

where 

¢.b ,b , b t~/t]. (57) t~ = t i j  + ti  t j  - -  

Restricting the coupled-cluster expansion to single and double (CCSD) excitations, 
i.e. 

[0)cc ~ 10)CCSD = etT'+T~)IHF), (58) 

the equations for the T amplitudes become [37] 

T~ equation: 

D~t~ = 2t~F.b  -- X t]Fj ,  + 2 t g F j b  
b j jb 

1 
- ~ t b ( j a  II ib) - 1 ~ t b c ( j  a Ilbc> - ~ ~tj~k b (k j  II bi) ,  (59) 

jb 2 ibc jkb 

T 2 equation: 

l)".b.t .@ P(ab) V t  .~.~ Fbc -- tbkFkc _ ,j ~,~ = ( ij II ab ) + z., ,J ~ 
c 

1 tjFkc + Y',zktWu~j 
k 

1 cd ac + ~ Y'.=~i W~bc~ + P(ij)P(ab) y'(t~ Wkb~ -- t~t~(kbltcj)) 
cd kc 

+ P(ij) ~ t~ (ab [I cj ) - P(ab) ~,t~ (kb N i j ) ,  (60) 
c k 

where 

1 
F.b = ~tf, (ka ]1 cb)  - -~ Y" £f,f (kl tl bc) ,  (61) 

kc k i t  

1 
Fj~ = ~ t~  ( j k  II ia) + -~ ~ ?'Fkb ( j k  II ab) ,  (62) 

ak kab 
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F;b = ~ tF (ij It ba) ,  (63) 
ia 

Wklij = (k l l l i j )  + P(ij) Et](klllia)a "~- ~ ~ z~b(klHab)'  (64) 

W,b~a = (ab[lcd)  -- P(ab) Etb(a i[ lcd)  + ~ . . z~b ( i j l l cd ) ,  (65) 
i U 

and 

Wkbcj = (kb l lc j )  + ~ t ; ( k b i [ c a )  - ~ tb ( k i r l c j )  
a i 

/1 ÷ab a b - ~ ~ji + t; h ) (kill c a ) .  (66) 
ia 

The effective two-particle excitation operators z and ~ are 

"~i? t~j b + t~t~ b . = -- ti t; (67) 

and 

-.b .b , . .÷b  tbt]), (68) ~2ij ~ t i j  "t- ~ t t i  t j  - -  

respectively. In the above equations, P(ij) and P(ab) denote the permutational 
interchange operations. 

The k coefficients in the RSPT expansion can be obtained from the couple- 
cluster ansatz through iteration of the T equations. For instance, the first iteration 
of the T2 equation gives K2, that is, 

k .~.b t~f(1) - (ij I] ab) (69) 
u = O i  ~ , 

which, when applied in the T1 equation, yields 

(aj  H be) tbc(1) _ ~ ( j k  II ib) t f(1)  . (70) 
jbc Df jkb 

Consequently, it is possible to write reference states for the electron propagator 
approach as expansion coefficients of the perturbation theory or as converged 
T amplitudes from the solution of the couple-cluster equations. 

Also, in comparing the RSPT and CC wave functions, it is clear that 

[0)RSP T = (1 + K~ + K 2 + ' " ) t H F )  

U 
10)CCSD = (1 + TI"+ (T2 + T2/2) + "--)IHF) 

0 

C C - E P  ~ R S P T - E P  

tf ,--, k~' 

z~ f ~ ki~ b. (71) 
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From the definition of the spectral representation (9) it follows that the elements 
of the electron propagator  matrix G(E) become infinite when E equals an electron 
binding energy. Then, the elements of the inverse G- I(E) vanish at such an energy. 
This result can be used to devise iterative methods to find the electron propagator 
poles and residues at a given level of perturbation expansion. 

Order analysis 

Truncation of the inner projection operator manifoldfand the use of RSPT for the 
reference state based on the so-called Mgller-Plesset partitioning of the Hamil- 
tonian as expressed in Eq. (32) facilitates an order analysis of the electron propaga- 
tor. In particular, the self-energy (see [30]) and consequently properties as e.g. 
electron binding energies and the one-electron reduced density matrix can be 
calculated to a given desired order of electron correlation or electron interaction. 
Starting from the inverse propagator matrix as given in Eq. (31) and using 
a shorthand notation the following expression is obtained: 

G- I (E)  = R.a(E) - RasRi)(E)Rsa, (72) 

where 

R..(E) = (a*l(EI - / ~ ) a * )  = E1 - H. . ,  

R. s = (a*l(EI - if/) f )  = - Has, 

RS~ = ( f l ( E I  - /7 / )  a*) = - HS. = - H~f, 

Rs~s(E) = ( f l ( E I  - f / ) f )  = E1 - HSS. (73) 

The RSPT expression for the reference state then permits the expansion 

n 

R~S = - ~ "'~st4(i) (74) 
i = 1  

where the fact that u(o) = 0 has been used. Together with corresponding expan- 11 af 
sions for the other matrices this gives an expression for the inverse electron 
propagator matrix through order n as 

--aa ~ - - a a -  ~ g(i) "~ Ula~ i) ("). (75) 
i:1 L,,~=I"'°I)  ~:0 I I j  ~ , : ~  

The first-order propagator  vanishes and the lowest-order expressions are obtained 
by calculating the various matrices to specific orders and by choosing the operator 
manifold f as follows: 

n = 2 ~ n l = l ,  n 2 = 0 ;  f = h 3 ,  

n = 3 ~ nl = 2, nz = 1; f =  h3, 

n = 4 ~ n I = 3, n2 = 2; f =  h3wh5, (76) 

which will be further elaborated in the following sections. 
Obviously the inversion of the very large matrix RIy(E ) is one of the difficult 

problems that has to be addressed. An inversion could be performed by employing 
a reduced linear equation (RLE) scheme [38] but rapidly becomes impractical with 
increasing basis sets. A number of approximate treatments have been proposed 
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[12, 39, 40] with varying success. The order concept can be preserved with the 
identity 

(~,(o) i L,(o'~ -1 
R ; / ( E )  - \ . . : f  ÷ i=l-.ff / 

--(R}~))-'- (R~')-1 (,= -- rfj ~ y Z i  "(0'~ f '(°, + ,~I"R(0) - '  y' (77) 

which can be iterated and truncated [41, 42, 12]. 

Method o f  solution 

The general expression for the element 

Gpq(E) = (ap I(EI - ~) -1  aq) (78) 

of the electron propagator matrix G(E) is symmetry blocked, where each block is 
formed by the spin orbital indices p and q belonging to the same irreducible 
representation of the orbitals. In addition, the electron propagator matrix G(E) is 
spin blocked. Therefore, it is sufficient to solve separately the electron propagator 
equations for each symmetry and spin block pq. 

For a given block and energy E it is possible to construct the matrix 

W(E) = E1 - G-1  (E) = E1 -- (Ro. (E) - H . :  g T :  (E) H: : )  

= E1 -- ((a* I(E'I -- ffI)la*) -- H a : R ] : ( E ) H : : )  

= E1 -- ((El - H~. -- H . y R f ) ( E ) H 2 I )  

= H~. + H . f R f ~  (E)Ht.I, (79) 

which allows the expression 

(1E - W ( E ) ) a ( e ) =  1. (80) 

This shows that the diagonalization 

U * W ( E ) U  = A(E) = 

- 21 (E)  

0 

2~(E) 

0 

= Ut(H~. + R*abR~bI(E)Rab)U, (81) 

is important, with n being the dimension of the symmetry pq block, and the 
eigenvalue corresponding to the spin orbital of interest (p) should be the pth pole 
(Ep) of the electron propagator matrix. This eigenvalue can be used as the next 
guess for an iterative search of the pth p01e or used to obtain a guess for 
a Newton-Raphson procedure. Since the derivatives of W(E)  with respect to E 
can be evaluated analytically, a Newton-Raphson procedure can be efficiently 
employed to calculate the next guess for E, so that, usually, after three or four 
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iterations the difference between the input E and the eigenvalue is less than 
10 -s Hartree. 

Layzer [43] treated such (in general non-hermitian) eigenvalue problems. 
When 

G(E) = {Up,}, p = 1,2, ... ,n, (82) 

is the eigenvector of W(E) corresponding to the eigenvalue 2,(E) and U;*, (E) is the 
eigenvector of W* corresponding to eigenvalue 2*(E) the expansion 

Up,(E) U*(E) 
Gpq(E) = ~ -E= 2 ~  (83) 

follows. The types of possible solutions have been discussed by Csanak et al. [15] 
and details have been explored by Purvis and Ohm [12]. The pole of interest E, is 
found when 

E, - 2,(Er) (84) 

and within a finite basis the Er are real and discrete. Elementary residue calculus 
gives 

where 

lim = [(E - E,)Gpq(E)] = GUp,(G)US(E,), 
E - ,  E R 

(85) 

[ d2'(E)l 
r,= I dE J~=~, (86) 

is the pole strength introduced earlier. The resulting expression 

Gvq(E) = ~ F, Up,(E,) Uqr(E,) (87) 
r E - E~ 

can then be compared to the spectral representation (9) to find 

( 01a ,  l r )  = r:/2 Up,(E,(N + 1 ) -  Eo(N)), 

(rlapl0) = F:/2Up,(Eo(N)- G(N - 1)). (88) 

The Feynman-Dyson amplitudes directly associated with the various electron 
binding energies are then 

:~,,(~) = ~ ,/,,(~)G,(E,)F:/~ 
P 

in terms of the canonical molecular SCF spin orbitals. 
The relationship of these amplitudes to the electron propagator 

~(¢, ~'; E) : ((O(~); ~t(~,)))~ 

= lim f'(~)f; (~) 
.~+o E + E o ( N S - - e - ~ - +  1) + it/ 

+ E - Eo(N) + E,(N - 1) - it/ 

(89) 

(90) 
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defined in posi t ion and spin coordinate  space becomes obvious from the ex- 
pans ion 

~(~, t) = ~ Zp(~)ap (t) (91) 
p 

of the fundamenta l  electron field opera tors  ~,(¢, t) and their adjoints in the basis. 
The  F e y n m a n - D y s o n  ampl i tudes  then are of two kinds associated with the elec- 
t ron a t t achmen t  processes and with electron detachment  processes, respectively 
(compare  Eq. (11)): 

f ,(~) = ~Zp(~ )<Ola . l r>  = y '  Zp(~)Up, F 1/2, 
p p 

g~(~) = ~ Zp(¢) <rlaplO> = ~ Zp(~)U~,.F~/2. 
P P 

(92) 

Solution scheme 

1. Choose  r. 
2. Get  block pq. 
3. Ge t  guess for E,. 
4. Cons t ruc t  W(E) = Haa "4- H ,  f R ~  (E,)H~f. 
5. Diagonal ize  UW(E,) = 2(E,)l .  
6. Get  the eigenvalue 2r associated with r. 
7. Set -,~w p") = At. 
8. Ge t  new guess (Newton-Raphson) :  

Ei+1= Ei - G-  I(Ei)/(~G~E(E))~=e ,. 

9. I E i -  E i - l l  < 10 -5 ? 
a. ? yes ~ Pole = El 
b. ? no ~ go to step 3. 

(93) 

Order analysis of  the propagator matrices 

Second-order electron propagator. In the following, subscript 1 refers to the hi  = a t 
par t  of the field ope ra to r  manifold and subscript  3 to the h3 par t  and so on. 
T h r o u g h  second order  the inverse of the electron p ropaga to r  matr ix  then becomes 

G(~) x (E) = R(1 °) -- "'1314(1)(~(°)(r~'33 ~ v -  I CH(I~Vt 13, , (94) 

where 

( I¢~(E) ) , ,  = (E - ~,) G~.  

( "'(1)L ,,b, 1113,,, . = (pi [I ab>, 

(H(1)~ 
• 1 3 ) p , i j a  = (paltij>, 

(R(°)IE~3 3 ~ ) ] a b i , c d j  : (E + ei -- e~ - -  e b ) ( ~ a c ( ~ b d t ~ i j  , 

(g(3~(E))ij..klb = (E + e. -- ei -- ej)aikajfiab. (95) 
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The second-order  self-energy matrix then has the elements 

1 ~ ( p i [ l a b ) ( a b l l q i )  1 ~ (pa l [ i j ) ( i jHqa)  (96) 
(s(E)(E))pq = 2 ,...b --E + Ti--~e, -- Tb + 2 i.j,. E + e. - ei - ej ' 

where the factor of 1/2 comes from the relaxation of the ordered indices. 

Third-order electron propagator. A similar t reatment  through third order  yields 
[41, 44, 30] 

a(;¢ (E) = (E) 
+HI3 )  (1)  (0)  - 1  1) (0)  - 1  - H l a ( R a 3 ( E ) )  H~3(R3,(E)) (HPa)) t 

- H~)(R~°J(E))- l(Ht2))t - -  Ht~)(R~°~(E)) - 1(Ht13))'t, (97) 

where 

with 

(H[3))p q = ~ <pa II bq)~C.b -- ~ (pi/I qJ> ~,j + ~ (1 + P(ia)) <pi II qa)k'], 
a,b i , j  i,a 

(98) 

c i > j  

~U Z Z t..b,..b (99) -:- r~il r~jl 

l a > b  

and where P(ia) is the permutat ional  interchange operation. The second-order  
matrices are 

(HtZ3))ab,,p = ~ ( ip II mn)  k~,~ + (1 - P(ab)) ~ (pc  [I ma)  k},~, 
m > n m,c 

(HtZ3))ija,p = E (apllbc)ki~ c + (1 - P(ij)) ~ (pm][ci)ky~, (100) 
b > c  m,c 

and the first-order diagonal  terms are 

(u(1)~ = 6u(abl lcd)  - 6ac(bjlldi) + a.a(bj[I ci) * a  3 3  )ab i ,cd j  

+ 6bc(ajlldi) - 6ba(ajllci), 

(H(31))Ua.k,b = 6ab ( ij ll k l)  + 6,k < jb II la) - 5,,( jb II ka)  

- 5jk(ib IIla) + aj,(ib II ka) ,  (101) 

Fourth-order and partial fourth-order electron propagator. Without  including the 
opera tor  manifold h5 the full four th-order  propagator  matrix can be expressed as 

G;¢(E)  = G~3¢(E) + Hi,~) _ , , r ' a r ( 2 ) ' ~ ( ° ) r ~ " -  1 u ( 1 ) , 1 3  ,-,33~,~v - ' ,  13 

i t . / (1)  t" D ( 0 )  { ~t?Y~ - 1 i £ ( 3 ) ?  ~r.jr(3) { D ( 0 ) (  ~ " t ~ -  1 l t / l l ) ' t  
- -  " 1 1 3  ~,*'t 3 3  ~ t~) )  1 " 1 3  - -  *A 1 3  ( 1 1 3 3  kz- '))  1 1 1 3  

H(X)ta(o)ru~- 1 l~lr(1)/p(o)t" 17~- 1 lGr(2)? 
- -  13~ ,  33~,  ) ;  3 3 t  33~, ) ;  1 3  

(2)  (0)  - 1 l r j ( 1 )  / D ( 0 ) (  l ~ " ~ -  1 l J ( 1 ) t  
- -  H 1 3  ( R 3 3  ( E ) )  * - 3 3  t'133t~11 " "  1 3  

* l  3 3 I.*~-3 3 kL' ) )  ~ - ~ 1 3  

(1)  (0)  - 1 U ( 1 ) / D ( 0 ) / I ~ V ~ -  I I . I ( I ) ' t [ D ( O ) [ I : g Y ~ -  11~1) ' t "  (102) -H13(R33(E)) --33,,-~33t~v *-33 t-~a3t~)) --x3 • 
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It is generally more important to include the contributions from the h5 manifold 
before increasing the order of the expansion [39] and one therefore finds it 
justifiable to study the electron propagator through what has been coined the 
"partial fourth-order" [-23, 40], where only the terms formed from the matrices 
already obtained in third order are retained. 

Density matrices and many-electron wavefunction 

The first-order reduced density matrix or the one-matrix can be calculated from 
Eq. (90) as 

~(~1~' )  = < 0 1 ~ ' ( ¢ ' ) ~ ( ¢ ) 1 0 )  = - i l i m  ( ( ~ p ( ~ ,  t);~9'(~',  t ' ) ) )  
l ' ~ t + O  

t "  
= (2rfi)-' Jc ((~(~); O'(~')))e dE, (103) 

where the contour C consists of the real axis and a semicircle in the upper half of 
the complex E-plane (see [7]). Residue calculus yields 

7(¢1¢') = ~ gr(Q g*(¢'), (104) 
r 

which can be compared to the equivalent definition 

7(¢[¢') = Nf~o(¢,¢~,¢~,  ... , ¢ s - , )~ (¢ ' , ¢~ ,¢~  . . . . .  ~s- ,)d¢~ d¢2 ... d¢s_~ 

(105) 

in terms of the ground state N-electron wavefunction cb o. Introducing the complete 
set of (N - 1)-electron states ~,, satisfying 

q~,(X)~*(X') = 6(X - X') (106) 
r 

with the compound coordinate X = (~1, ~2, . . . ,  ~s-1). Then 

y(¢1¢') = N ~ f ~bo(~,X)~*(X)¢*(¢',X')~r(X')dX dX' (107) 

and we can identify the Feynman-Dyson amplitudes with the so-called overlap 
amplitudes 

q,({) = N 1/2 .f CI)o({, X) cI)*(X) dX, (108) 

Obviously, if both wavefunctions in Eq. (108) are single determinants differing 
in one spin orbital, that spin orbital will correspond to the Feynman-Dyson 
amplitude, while for correlated wavefunctions the amplitudes are more gen- 
eral. In addition to being important for describing intensities in photoelectron 
spectra Feynman-Dyson amplitudes are also relevant for (e, 2e) experiments (see 
e.g. [45]). 
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Photoionization intensities 

The electron propagator can be used to calculate total energies, excitation energies, 
and one-electron properties in general. However, it is perhaps most useful in the 
study of photoelectron spectroscopy. In addition to the electron binding energies it 
can also be used to obtain estimates of photoelectron intensities. 

The differential photoionization cross section, i.e. the probability that the 
systems absorbs one photon causing a transition from the ground state with 
wavefunction 10> = 4o to an excited state [r> consisting of a bound ion state with 
wavefunction IN - 1, r> = 4, and an electron escaping into the solid angle dO 
with wave vector k'I, is 

<1"1 ~ O> 2. da__ Z = kf X(r~). Vs I (109) 
dr2 27zc[Ao12Co s=l 

The vector potential of the monochromatic radiation field is ~(F) = Ao~e i~'v with 
polarization vector g and frequency co. The approximate form of final (antisym- 
metric) state wavefunction, 

] r> = OAsN1/2V(~y,  ~74)4r(41, 42, . . . ,  4N-1) =~ OAsN1/Zv(-~f, 4N)4,(X), (110) 

contains a photoelectron amplitude v, which should be a Feynman-Dyson con- 
tinuum amplitude, but for a molecular system one usually has to settle for an 
assumed form. The antisymmetric projector is 

O A s = N - 1  1--  PkN (111) 
k=l 

with the simple interchange permutations PkN of electron labels. This form of final 
wavefunction permits us to write 

<r[ ~ .4(Vj)'Vj[0> = v*(-~f, ~)A'Vg,(4)d~ 
j = l  

+ ~v*(-~:, 4)P~(4) d4, (112) 
3 

with 
(, 

Pr(4) = (N - 1) N1/2 J 4 *  (X) A(F1) • V14o (X, 4) dX. (113) 

The second term vanishes if v(~f, 4) is strongly orthogonal to 40, which can be 
accomplished by making v(-~y, ~) orthogonal to the bound state basis. But even 
when strong orthogonality does not exist the second term is small for photo- 
electron energies far from threshold. 

Retaining only the first term on the right of Eq. (112) and averaging over 
all incident photon directions relative to the fixed molecular frame and over the 
polarization directions assuming a random orientation of the molecules as in 
a gaseous sample and for unpolarized light, Eq. (109) becomes 

dar kf ~ dg 2. 
- - -  v*(~f g)Vgr(r-) (114) 

dO 3ncco J 

To obtain this result also the dipole approximation was invoked, i.e. e i~'; ~ 1 and 
multiplication by a factor 2 done to account for the two possible spin states of the 
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ejected electron. The choice of a plane wave, an orthogonalized plane wave, or 
a Coulomb wave for v(-~f, ~) has been tried with varying success depending on the 
system and the photon energy [16, 46]. The orthogonalized plane wave choice 
seems to work reasonably well for the detachment of an electron from a negative 
ion leaving a neutral species. A plane wave is convenient, but not particularly good 
under any conditions. It results in [26] 

da, kf 
- IP ,  I z, 

dO 3ncco 

Pr = -- i'~f(27Z) -3/2 Z CP 'e-i~)'Rq d~', (115) 
P,q  

where the Feynman-Dyson amplitude has been expressed as a linear combination 
of atomic orbitals (GTOs) {qSp} 

g,(~ = ~ 4)p(F- -Rq)cp,. (116) 
P,q 

The total cross section is given by integrating over all photoelectron directions 

kf flPrl z Of 2. (117) err - 3ncco 

Sometimes the ratios of pole strengths are used to predict relative intensities of 
structures in a photoelectron spectrum and that can work for peaks of not too 
disparate photoelectron energy. 

The Vectorized Electron Propagator (VEP) program 

Approximations to various orders in perturbation theory of the electron propaga- 
tor have been implemented in the Vectorized Electron Propagator (VEP) program. 
Poles and associated pole strengths are computed. This code is designed to be 
efficient by minimizing the number of floating point operations and by exploiting 
vector and parallel features of modern hardware. This is accomplished by avoiding 
redundant calculations through the definition of appropriate intermediates and by 
using symmetry wherever suitable. 

The VEP code exploits the spin and point group symmetry to block the 
matrices from which the propagator matrix is built. Direct product decomposition 
(DPD) is used with a scheme that avoids redundant symmetry checks before each 
contraction. This procedure makes the code adapted to take advantage of parallel 
architectures. 

Another feature of the VEP program is the possibility of a renormalized 
treatment of the reference state of the propagator via the use of CC amplitudes as 
well as the standard MBPT amplitudes. This is accomplished by interfacing the 
VEP code with the ACESII program system. 

The DPD scheme. Efficient evaluation of matrix products necessary for the elec- 
tron propagator calculations can be exemplified by a contraction 

Q = Tx  W. (118) 
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The indices of the matrices can be divided into two categories, on the one hand the 
"target indices" q, t2, . . . ,  which label the matrix Q and the "common" indices 
ca, c2 . . . .  over which the contraction is performed. The target indices can further 
be divided into those which Q shares with T and those which it shares with W, 
such that 

Q~,(r),~2(r) ..... ,,(w~,,2(wl... = ~ T~(r),cWc.,w). (119) 
C a , C Z ,  " "  

Each element of Q, T, and W vanishes unless the direct product of the irreducible 
representations of all indices labelling the quantity in question contains the totally 
symmetric representation. For Abelian (sub)groups this requires only the following 
conditions to be fulfilled: 

r ( t l (Y) )  ® r(t2(T)) ® . . . .  r ( q ( w ) )  ® r(t2(w)) ® ... 

F(ta(T)) ® F(t2(T)) ® . . . .  F(Cl) @ F(c2) ® ... 

F(cl) @ F(c2) ® . . . .  F(tl(W)) @ F(t2(W)) ® ... (120) 

The details of the computational strategy as to storage of the data structures, the 
manipulation in core memory, the functionality of various subroutines, etc. are 
reported in a separate publication [47]. 

3. Results 

The photoelectron spectroscopy (PES) offers techniques to study the electronic 
structure of atoms and molecules including transient and unstable species. This 
makes it a powerful tool to study reaction mechanisms in gas phase and on 
surfaces. PES has been used, for instance, to elucidate the electronic structure of 
donor-acceptor (DA) complexes. 

As an illustration the electron propagator program VEP is used to calculate the 
main peaks of borane (BH3) with donors such as HzO and CO. These simple 
applications are limited to a second-order treatment of the electron propagator 
(EP2). 

Monomeric borane has a very short lifetime, but is a strong Lewis acid and may 
be stabilized by forming complexes with Lewis bases [48]. BH3 resembles 
a transition metal atom in a low oxidation state, in the sense that it can form 
complexes with, say, carbon monoxide and phosphorous trifluoride having negli- 
gible basicity. It has been suggested that the complexes of BH3 with CO or PF3 are 
formed via a ~-type delocalization of the BHs e-orbitals into unoccupied CO and 
PFs orbitals. The study of systems such as BH3. CO and BH3. HzO may provide 
experience as to the reliability and suitability of the electron propagator as a 
tool for analyzing PES experiments on heterogeneous catalysis, for instance, CO 
chemisorption and reactions (methanol synthesis) on low oxidation state d 1° 
transition metal oxide surfaces, such as ZnO(1 0i0) and also CuCI(1 1 1) [49]. 

Molecular geometries 

The electron propagator program is implemented in the ACES II program system 
[50]. All calculations presented were performed on an IBM RS/6000-580. The 
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Table 1. Optimized geometries at the MBPT [2] level with pVDZ bases. The notation Hs means that 
the proton lies in the symmetry plane of the Cs point group 

Complex Point group Geometrical parameter MBPT [2]/pVDZ Experimental 

HaB" CO C3v BC 1.565 A 1.540 
CO 1.144 A 1.131 A 
BH 1.217 A 1.194 ~, 
CBH 103.8 ° 104.2 ° 

H3B'OC C3~ BO 2.585 
CO 1.147 A 
BH 1.203 
OBH 90.9 ° 

H3B' OH2 Cs BO 1.730 
OH 0.963 A 
BH and BHs 1.214 
OBH 100.6 ° 
OBHs 103.7 ° 

H3B D3h BH 1.203 ,~ 

CO C®~ CO 1.147 ~, 1.128 

H20 C2v OH 0.964 ~, 0.958 
HOH 102.0 ° 104.5 ° 

Table 2. An FRS is a "factor of reduction due to symmetry" of cpu time used. The 
VEP code in the ACES II program system achieves for this case a factor of more 
than 10 speed-up in the execution of the code 

Molecule Size of basis Point group Achieved FRS 

BH3 72 C1 1.0 
C2, 10.3 

basis sets are correlated consistent pVDZ [51], which consist of (9s4pld/[3s2pld] 
for first row elements and (4slp)/[2slp] for hydrogen. All structures are optimized 
at the RHF/MBPT [2] level of theory. The results are listed in Table 1. 

Symmetry 

The effects of molecular symmetry on the performance of the code is illustrated 
by calculating the PES of BH3 at the EP2 level in the pVTZ basis, i.e. 
(lOs5p2dlf)/[4s3p2dlf]//(5s2pld)/[3s2pld] in the maximal Abelian subgroup 
Czv and in C1. The theoretical factors of reduction (in computing time or total 
number of floating point operations) due to symmetry (FRS) have been defined 
[37] and is found in many cases for total energy calculations using the CCSD 
(coupled-cluster singles and doubles) level of theory to be close to the symmetry 
group order square. As displayed in Table 2 the present calculation does not quite 
reach that efficiency improvement with the symmetry treatment, but still a respect- 
able reduction in computing time is achieved. 



Electron propagator theory and application 417 

Donor-aeceptor PES 

The photoelectron spectrum with a UV source (UPS) of H3B. OH2 calculated at 
the SCF (Koopmans' theorem) and the EP2 levels are compared to experimental 
results [52] in Table 3. 

Due to the hydrolysis of diborane the experimental investigation of the 
H 3 B .  O H 2  complex is difficult [48] and introduces some uncertainty about 
whether the observed features in the He I spectrum really is due to H3B. OH2 or 
something else. The agreement between the calculated (EP2) peaks and the UPS 
spectrum is as expected except for the observed feature at 14.4 eV. This is not 
consistent with the theoretical result, but before suggesting that this feature might 
not be due to H3B. OHz the electron propagator calculations have to be carried to 
the third or partial fourth order and also a larger basis used. 

Comparison of Koopmans' theorem and the EP2 results with experiment for 
the H3B. CO complex is presented in Table 4. 

Similar calculations are carried out for the H3B. OC complex and are reported 
in Table 5. 

There is definitely a better agreement between the calculated and the observed 
PES for H3B- CO than for H3B. OC indicating the discriminatory power of the 
electron propagator theory even at this primitive level. 

In conclusion one can again reaffirm what has already been established by 
many workers in the field, namely that the propagator theory is an appropriate and 
practical approach to the interpretation and prediction of spectra. The results 
presented here also show that in order to contain truly quantitative agreement with 
experiment it is necessary to consider electron propagator theory at the third and 
partial fourth order and to also be able to accommodate larger basis sets. 

Table 3. Electron propagator poles at the SCF at the SCF level (Koopmans) and at the EP2 level are 
compared with experiment for the H3B.OH2 complex 

Assignment Koopmans (eV) EP2 (eV) Experiment 
(pole strength) UPS (eV) 

(B-H) 7a' 11.3 10.5 (0.93) 9.7 
re(B-H) 7a' 11.8 11.1 (0.94) 10.6 
¢(B-O) 6a' 15.6 13.5 (0.91) 11.8 
n(O) 5a' 16.4 14.2 (0.90) 13.2 
n(O) + ¢(B-O) 4a' 20.7 18.6 (0.89) 14.4 

Table 4. Electron propagator poles at the SCF (Koopmans) level and at the EP2 level compared with 
experiment for the H3B'CO complex 

Assignment Koopmans (eV) EP2 (eV) Experiment UPS (eV) 
(pole strength) 

2e (B-H) 12.8 11.9 (0.92) 11.9 
6al (B-C) 15.1 13.9 (0.91) 14.1 
le (C-O) 18.6 17.1 (0.87) 17.0 
5a~ (CO) 21.6 18.1 (0.85) 18.5" 

"Adiabatic ionization energy 



418 R. Longo et al. 

Table 5. Comparison of the electron propagator poles at the SCF (Koopmans) level and at the EP2 
level with the same UPS spectrum as in Table 4 

Assignment Koopmans (eV) EP2 (eV) Experiment UPS (eV) 
(pole strength) 

2e (B-H) 13.2 12.6 (0.94) 11.9 
6ax (B-C) 15.3 14.0 (0.92) 14.1 
le (C-O) 17.5 16.3 (0.89) 17.0 
5al (B-H) 18.7 17.5 (0.92) 

4al (C-O) 22.5 19.0 (0.86) 
18.5 a 

a Adibatic ionization energy 
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